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Abstract. The construction of generating functions for the multiplicities of irreducible 
representation r in the decomposition of s th  supersymmetrical power y { s ) ,  where r a n d  
y are  the representations of some supergroup G, is discussed. A number 01' examples are  
considered. The definitions are given for general groups,  but the derived results are  for 
the simplest specific cases. 

1. Introduction 

Recently superalgebras and  supergroups have been widely applied to elementary 
particle theory (Fayet 1986), and in nuclear theory as well (Balantekin and Bars 1981). 
Therefore it is of current interest to generalize the various results of the representation 
theory of ordinary Lie groups and Lie algebras with a view to applying them to 
supergroups and  superalgebras. A great deal has been done in this field by Berezin 
(1983) and  other authors (Bernstein and Leits 1980, Leits 1980, Hughes and King 
1987). In  this paper we shall consider the generalization of the so-called Molien 
functions (Molien 1898) to supergroups. Molien functions play an important role in 
the theory of invariants and their generalization to the case of supergroups is very 
important for the construction of the effective Hamiltonians of the quantum system 
possessing one or another type of supersymmetry. 

First we shall briefly recall the definition of Molien functions (Asherova et a1 1988). 
Let us denote by y a given (irreducible or reducible) representation of the group G. 
We shall denote by y"]  the symmetrized sth Kronecker product 

y x y x . .  . x  y y[ ' l  = - 
s times 

of this representation y. The representation y [ ' !  is normally reducible and is decom- 
posed into a direct sum of the irreducible representations r of G. This means that 

where n(T,  y ,  s)  is the multiplicity of r, i.e. the number of times it occurs in  the 
decomposition of y [ ' ]  into the direct sum of r. The Molien function ( M F )  @(T, y ;  A )  
is the generating function for n(T,  y ,  s) .  That means that the expansion of @ in powers 
of some parameter A has the form 

We shall call this function the boson MF.  
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1 
Im1 ,m2 ,  . . . ,  my)=-det 

d 7  

Now (by considering a number of examples), it will be shown the way this function 
can be generalized to supergroups. We begin with the construction of Molien functions 
q(T, y ;  A )  for the antisymmetrized product y‘“] of the representation y.  This function 
will be referred to as a fermion MF. The consideration of such an M F  allows us to 
construct the M F  for the graduated representation y (supersymmetric Molien functions). 

Im,(l))  Im2(1)) ’ . .  Ims(1)) 

Im,(s)) Imz(s)) Im,(s)i 
(2.5) ... i 

2. Fermion Molien functions 

As has been mentioned above, the fermion M F  q(r, y ;  A )  is the generating function 
(GF)  for the multiplicity n(T, y, s)  of r in the decomposition of the antisymmetrized 
Kronecker product 

y‘”] = A y  x y x . . . x y 

of the (reducible or irreducible) representation y of the group G into the direct sum 
of irreducible representations r of G: 

ywl =I n ( T ,  Y ,  
I 

In other words, the expansion of cp(T, y ,  A )  in powers of A has the form 
d 

d r ,  Y; A )  = C n(T ,  Y ,  s ) ~ ‘ .  
i =o 

R, (w) lml ,  m 2 , .  . . , m , ) = e x p  Im,,  m,, . . . , m,). (2 .6)  
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Using (2.6) one can easily find that the character of this rotation in the representation 
+ ' ' I  is 

X,rl ] ( C O ) =  c ZZA-1". (2 .7)  
m , , - m 2 >  > m  

Inserting this result first into (2.3) and then into (2.2), we obtain as an  integrand the 
following sum: 

d s = c  c A T Z L l ' ? .  
\ = O  m ,>mz>  >ni 

It can be easily seen that 
J 

S =  n ( l + A z m )  
m = -J 

J 

= 1 +  1 Azml+ A'z"'izrn2+ . . . +  AdzJz'- ' .  . .  z-'. (2.8) 

Now we can pass over to the integration of this result over the classes of the group 
SO(3) (see, for example, Asherova et a1 1988) and obtain the following expression of 
the fermion Molien functions: 

In1=-, 

(2.9) 

The integration is carried out over the unit circle in a complex plane. Therefore, 
assuming that A < 1, one can evaluate this integral by residues. 

In the special case of the fermion M F  for the invariants (i.e. in the case J = 0) we have 

(2.10) 

For example in the case j = 1, we obtain 

c p ( ~ , i ; ~ ) = 1 + ~ 3 .  

This means that there exist only the zero- and third-degree invariants. This result has 
a clear physical interpretation. The multiplicity n(O, j ,  s)  gives the number of antisym- 
metrized states with a total angular momentum J = 0, which can be found in the shell 
model configuration j "  (0 s s s 2j + 1).  It is well known that for p particles ( j  = 1) the 
antisymmetrical states with total angular momentum J = 0 may exist only in configur- 
ations Po and  P3, which is in agreement with (2.10). By analogy, for the case j = 3 we 
obtain 

cp(0,3; A)=1+A3+A4+A7.  

Let us now consider the case of half-integer j .  The integration over w is carried out 
from 0 to 477 and it is convenient to substitute z + h. As a result, for the fermion M F  
we obtain 

In the special case of the invariants (i.e. J = 0) the M F  has the form 

(2.11) 

(1 -z2)2  J 

cp(0,j ;  A )  = -$Res/,=,- n (l+Az"). 
z3 m = - ,  
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Using this function, for example, in the case j = 3 we obtain 

P ( O , { ; A ) =  ~ + A ' + A ' + A ~ + A ~  

which means that in this case the O(3 )  scalars exist only in the configurations ( ; ) 2 ,  

($)4, ( : ) 6  and ($)'. 
In the above-considered cases one can also easily obtain expressions for the M F  

for the covariants (i.e. for the tensors of rank J ) .  However, we prefer first to generalize 
the FM (2.9) and to represent it in the form which contains information about all 
tensors of rank J which can exist in the arbitrary antisymmetrized Kronecker products 
j [ " ] ,  s = 0,  1, . . . , d. For this reason we can introduce the generating functions of two 
parameters 

X 

S( j ;  A, t )  = cp(J , j ;  A ) t J  
J = O  

J c d  
= n ( J , j ;  s ) A c t J .  

J = O  s = O  
(2.12) 

The coefficient before the term A ' t J  in the expansion of these functions in powers of 
the parameters A and t shows the number of tensors of rank J which can be found in 
the antisymmetrized sth Kronecker product j ' " ]  of the representation D J  of SU(2).  
Taking into account that 

1 3: tJ,YT(z)=- 1 (L-) Z = ( l + t ) z  
J = O  1-1 1-z t  z - - t  ( z - t ) ( l - z t )  

it is obvious that the function S( j ;  A, 1 )  can also be calculated by the method of 
residues. So for integer values of j we have 

(1-z) '  
d ( j ;  A, t )  = -;Res fr ( l+Az" )  

z (z  - I ) (  1 - z t )  m = -, 
and for half-integer values 

(1  - z y  J 

z2(z  - r ) (1-  zt)  "=-, 9( j ;  A, t )  = -;Res n (1SAz'"). 

(2.13) 

(2.14) 

In the last case the series expansion of the G F  

4 ( j ; ~ ,  t ) = ~  n ( J , j , s ) ~ ' t '  k = 2 J  (2.15) 

differs from (2.12) by substituting k = 25  instead of J.  Application of the formulae 
(2.13) and  (2.14) to the particular cases j = 1 and  j = i  gives the following results 

%( 1; A, t )  = 1 + A t  + A ' t  + A 

g($;  A, t ) =  1 + A t 3 + A ' + A 2 f 4 + A 3 t 3 + A 4 .  

These generating functions can by used for the classification of the antisymmetric 
states belonging to an arbitrary configuration j " .  Of course, the same results for many 
particular values of j = f ,  1, 1, etc, can be found in the tables, o r  can be obtained by 
means of other methods (for instance, by means of the characters of the antisymmetrized 
sth Kronecker products of I R  (Ljubarsky 19571, or  using combinatorial methods (see 
Buther 1967, Sunko and  Syrtan 1985)). The significance of the generating functions, 
however, is that they contain the whole information of the tables in a compact form. 
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So far we have considered only the case of the group G = S 0 ( 3 )  (SU(2)). This 
analysis, however, allows one to suggest that the two-parameter fermion M F  for arbitrary 
group G can be written down in terms of the supertrace sTr and  superdeterminant 
sdet that will be considered below 

Since the two-parameter boson M F  has a n  evident form 

we see that the transition from boson M F  to fermion M F  can be done through the usual 
Tr and  det by supertraces and superdeterminants. 

3. Molien functions for the SU(2) invariants and covariants in the enveloping UOSp($) 
algebra 

Now, analysing the example of SU(2) invariants and  covariants in the OSp(i)  superal- 
gebra, let us consider the generalization of M F  to the case of supersymmetry. As is 
well known (Berezin and  Tolstoy 1981), the basic elements of the OSp(f) superalgebra 
are the operators J , ,  J 2 ,  J3 (the even generators of subalgebra SU(2)) and  the operators 
R , ,  r- (the odd generators which form a tensor of rank f according to SU(2)). 

We can construct the generating function for the numbers of SU(2) invariants and  
covariants by the same formula (2.3), in which, however, xy[l'i(d) is replaced by the 
character of the rotation g for the sth supersymmetric Kronecker product y " )  of the 
representation y = 0'0 D"' of the group SU(2).  Here {s} is a Young superdiagram 
containing s squares in one  row. In the pure-boson case we have { s } = [ s ] ,  i.e. the 
supersymmetric Kronecker product coincides with the ordinary symmetrized Kronecker 
product, and  in the fermion case the sth supersymmetric Kronecker product coincides 
with the corresponding antisymmetrized sth Kronecker product. In the 'mixed' boson- 
fermion case (i.e. in the space of the graduated representation y )  the space of the 
supersymmetric Kronecker product of the representation under consideration may be 
constructed in the following way. 

Let us have three boson creation operators with spin 1, b:, rn = 0, il and two 
fermion creation operators with spin f, a:, p = if and let us consider the set of all 
states of the type 

In,, n2, n3 ,  n4, n5) = ( b ~ ) " i ( b , ' ) " Z ( b ~ ~ ) n ~ ( a f , , ) n 4 ( ~ ~ , , 2 ) " 5 1 0 )  (3.1) 
where IO) is the boson-fermion vacuum. It is obvious that the occupation numbers n , ,  
n 2 ,  n3 can be arbitrary non-negative integers, while the numbers n4 and ns  can take 
only the values 0 or 1. The space of the states (3.1) with n ,  + n z +  n 3 +  n,+ n5 = s is 
isomorphic to the s th  supersymmetric Kronecker product of the representation y = 
D'O D"*. On the other hand, the operator of the rotation can be represented in the form 

R 3 ( w )  = exp(iwJ,) 

where 
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and it is evident that the vectors ( 3 . 1 )  are eigenvectors of this operator and correspond 
to the eigenvalues 

(3.2) Z 2 n  I - 2 n , t  n2- ni exp[iw(n, -n,+$,-+n,)]  = 

where z = exp(iw/z). Therefore the character of the supersymmetric sth Kronecker 
product of the representation is equal to 

(3.3) { ( ) = Z 2 n , - 2 n , + n * - n S  

Xr '' n l .  ... n5 

where the summation is carried out over all n, satisfying the condition 

n4, n5 = 0 or 1 and n ,  + nz+  n3 + n 4 +  n5 = s. 

Inserting this result into (2.3), and after that into (2.2), it is easy to find that the 
supersymmetric M F  has the form 

1 
F(J,  y ;  A )  =- I dgXT(g) C A '  1 ~ ~ ~ 1 - ~ ~ 3 ~ ~ 4 - ~  5 .  

VG s n , ,  ... nS 
(3.4) 

Taking into acccount that s = n ,  + n 2 + .  . .+ n5, the sum in (3.4) can be rewritten in the 
form 

C C L m T 1 1  

1 ( A z ~ ) ~ ~ A " ~ ( A z - ~ ) ~ ~ ( A z ) ~ ~ ( A z - ' ) ~ ~  
n l = O  n2=0 n 3 = 0  n4=0  n 5 = 0  

( 1  + A Z ) (  1 + A Z - I )  - - 
( 1  - Az2)( 1 - A )( 1 - A z - ~ )  ' 

In such a way we obtain 

( I + A Z ) ( ~ + A Z - ' )  
( 1 - A Z ~ ) (  1 - A ) ( 1 - A Z - ' )  ' 

(3 .5)  

Now the M F  (3.4) can be calculated again by residues. 

we obtain 
In the special case of M F  for the SU(2) invariants in the enveloping algebra UOSp($) 

1 ( 1  - z2)'(i + A Z ) ( Z +  A )  
F(O,l@;; A ) =  -- Res 2(1 - A )  ( z = ~ , = ~ )  z2( i  - , i z 2 ) ( z 2 - h )  

In this case, however, as in all the other cases when the representation y is reducible, 
it is convenient to use the generating functions not with one, but with two parameters- 
parameter A ,  which gives the degree of the boson operator b' (or the degree of the 
even part of the representation, Dl)  and parameter h2 which gives the degree of the 
fermion operator a +  (or the degree of the odd part of the representation, D1'2). This 
allows us to easily separate the even and the odd parts in space y"' and to determine 
which of these parts belongs to a given invariant or covariant. The two-parameter form 
of the formula (3.5) is 

F(O,1@4; A I ,  A21 

(3.7) 

This means that in the enveloping algebra of UOSp(i) there exists one basic invariant 
J 2  that can be used in arbitrary power and one auxiliary invariant B = R+R- + R-R,  
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which can appear only with exponent 0 or 1, so that the general SU(2) invariant H 
can be represented in the form 

rs 

H = 1 (a,  + b,B)J2”.  
n = O  

By analogy with (2.14) one can construct G F  for all covariants of UOSp(f) 

1 + A 2 t  + h l A 2 t  + A :  
s ( l @ i ;  A , ,  A 2 ,  t ) =  

(1 - A,?’)( 1 - A:) * 
(3.9) 

Obviously this expression can also solve the problem of the reduction of the irreducible 
representation of the supergroup U(2) with Young superdiagram { s} when this group 
is restricted to the subgroups 0,(3) x SU,(2) + SU’(2). 

It should be mentioned that in (3.9), and in (2.15) as well, the exponent of the 
parameter t2’ gives the doubled value of angular momentum J. 

Now let us extend this particular result to the case when the general supergroup 
G’ contains, as a subgroup, the ordinary group G, G’ 3 G. In fhis case we want to find 
the M F  giving the number of invariants (or covariants of rank J )  with respect to G 
which can be found in the sth supersymmetric Kronecker product of the representation 
y of the supergroup G’. For this purpose one can generalize the expression (3.5) writing 
the M F  for the above-mentioned case in the form 

1 (sTr D*‘(g))* 
V,  sdetl l-  ADY(g)\  

F ( T ,  y ;  A )  =- dg (3.10) 

Here, as in Berezin (1983), we use the following definition for the superdeterminant: 

sdetjA” A ’ 2 /  =detlA,,-A,2A;~A2,1det A;: 
A21 A22 

(3.11) 

In (3.11) the submatrix A, ,  corresponds to the space of the even states, and A,, 
corresponds to the space of the odd states. By definition, the supertrace of the matrix 
is 

sTr 1 A” 1 = Tr A I  , - Tr AZ2 
A21 A22 

(3.12) 

which means that if the irreducible representation belongs to the even part of space 
y ” )  then sTr Dr(g) =xI- (g)  and if Dr belongs to the odd part of space yts) then 
sTr Dr(g)  = -xr(g).  As a matter of fact, if we take the matrix D Y ( g )  in diagonal form, 
then in the case y = D l 0  D”2 the expression (3.10) gives 

which is in agreement with (3.5). This can be easily seen taking into account that for 
the half-integer J on the RHS of (3.13) only the odd degrees of A survive, and the sign 
factor (-1)2’ = -1 may be compensated if we substitute A + -A ,  after which (3.13) 
coincides with (3.5). 

As has been mentioned in (2.16), the formula (3.13) is valid also for the pure-fermion 
case. As a matter of fact, in this case 

sdet( l -AD’(g))= sTr D’(d = *xJ(g) 
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where the sign in the expression for the supertrace is plus if the IR D' appears in the 
even sth Kronecker product, and minus if s is odd. 

Inserting these expressions in (3.10) and taking into account that the even degrees 
of A appear with a plus sign, while the odd degrees of A appear with a minus sign 
(which is equivalent to the substitution A + - A ) ,  one can easily see that 

i 1 ~ Z ( ; ; Z ) ~  J 
q ( J , j ;  A ) = -  - - - - - - (*~s(z))  (1 -AIm)  

TT m=-, 

The formula (3.10) turned out to be a sufficiently reasonable generalization of the 
boson M F  (2.16) to the fermion case, as well as to the case of the graded space y = 1 of. 
This is due to the fact that in these cases one of the following alternatives is possible: 
(i) the representation D' is related to the even or to the odd parts of the space y"' 
(which corresponds to the integer or half-integer values of J ) ;  (ii) the space y'" in 
itself is entirely even or odd (as in the fermion case). In the more general case the 
formula (3.10) will give a function F ( T ,  y ;  A )  whose expansion in powers of A will 
have a meaning different from the ordinary MF.  In this case we shall have 

FV, Y ;  A )  =I 4', Y ,  s)A' 
5 

where 

v(r, Y,  s)  = n e v e n ( r r  Y ,  s)  - nodd(r,  Y ,  s). 

Here neven(odd)(r ,  y, s) are the multiplicities of I R  in the even and odd parts of the 
supersymmetric Kronecker product y'" .  So we lose part of the information in the 
spectrum of y" )  when G' is restricted to the subgroup G. To avoid this it is necessary 
to decompose the representation y = yeCB yo into even and odd parts and to introduce, 
by analogy with (3.7), two parameters A ,  and A 2  which control the exponents of the 
submodules ye and yo .  The terms with the even exponents A ,  belong to the even part 
of y"' ,  and the odd exponents A 2  are related to the odd part of 7'". In  this way it is 
possible to independently find neven(rr y, s)  and n o d d ( r ,  y, s) and also the total multi- 
plicity of the I R  r in y"', i.e. 

(3.14) 

as has been demonstrated in (3.9). 
So far we have considered the G F  for the restriction of some group or supergroup 

G' to the ordinary subgroup G. In  this way it has been shown that many aspects of 
the programme for the calculation of Molien functions, which was implemented by 
the Canadian theoreticians (Patera and Sharp 1979) for the ordinary groups G ' x G ,  
can be applied to the case when G' is a supergroup as well. This makes it possible to 
solve, in an elegant way, many classification problems in group and supergroup 
representation theory. The problem of the construction of M F  in the case when both 
G' and G are supergroups is still open, because the characters of the representations 
of supergroups differ in properties from those of ordinary groups and expression (3.10) 
cannot be considered as a superanalogue of M F without additional considerations. We 
hope to come back to this question in the future and to consider in a forthcoming 
paper how generalized Molien functions might be used in problems such as the 
classification of super Lie algebras. 

n(r, 7, S ) = n e v e n ( r *  ?, s ) + n o d d ( r ,  7, s, 
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